Lect 6

Image Theory.

Arrays of two isotropic point sources.

Image Theory

Vertical Electric Dipole (VED)

Virtual source
(image)
Copyright © 2005 by Constantine A. Balanis All rights reserved

Fig. 4.12a
Chapter 4
Linear Wire Antennas

Actual and Equivalent Problems

Actual Problem

Copyright© 2005 by Constantine A. Balanis All rights reserved

Equivalent Problem

Chapter 4
Linear Wire Antennas

Electric conductor

vertical dipole above infinite ground plane

vertical dipole above infinite ground plane

$$
\begin{aligned}
& E_{\theta}=j \eta \frac{k I_{o} l e^{-j k r_{1}}}{4 \pi r} \sin \theta+j \eta \frac{k I_{o} l e^{-j k r_{2}}}{4 \pi r} \sin \theta \\
& E_{\theta}=j \eta \frac{k I_{o} l e^{-j k r}}{4 \pi r} \sin \theta\left[e^{j k h \cos \theta}+e^{-j k h \cos \theta}\right] \\
& E_{\theta}=j \eta \frac{k I_{o} l e^{-j k r}}{4 \pi r} \sin \theta[2 \cos (k h \cos \theta)] \quad z \geqslant 0 \\
& E_{\theta}=0
\end{aligned} \quad z<0
$$

Copyright© 2005 by Constantine A. Balanis All rights reserved

Chapter 4
Linear Wire Antennas

Scalloping Of Amplitude Pattern Of Vertical Dipole

$\theta \longleftrightarrow \downarrow$

Horizontal Dipole

Horizontal dipole above infinite ground plane

Horizontal dipole above infinite ground plane

$$
\begin{aligned}
& =j \eta \frac{k I_{o} l e^{-j k r_{1}}}{4 \pi r} \sqrt{1-\sin ^{2} \theta \sin ^{2} \phi}-j \eta \frac{k I_{o} l e^{-j k r_{2}}}{4 \pi r} \sqrt{1-\sin ^{2} \theta \sin ^{2} \phi} \\
E_{\psi} & =j \eta \frac{k I_{o} l e^{-j k r}}{4 \pi r} \sqrt{1-\sin ^{2} \theta \sin ^{2} \phi}\left[e^{j k h \cos \theta}-e^{-j k h \cos \theta}\right] \\
E_{\psi} & =j \eta \frac{k I_{o} l e^{-j k r}}{4 \pi r} \sqrt{1-\sin ^{2} \theta \sin ^{2} \phi}[2 j \sin (k h \cos \theta)] \quad \mathrm{z} \geqslant 0 \\
E_{\psi} & =0
\end{aligned}
$$

An infinitesimal dipole of length $1=\lambda / 50$ is placed vertically above the ground at height $\mathrm{h}=2 \lambda$ Derive an equation for its field pattern

Example (Problem 4.37)
Determine the smallest height that an infinitesimal vertical electrical dipole of $\mathrm{l}=\lambda / 50$ must be placed above an Electrical ground plane so that AF Pattern has only one null at 30° from The vertical. For that height find -The directivity -the radiation resistance

$$
\begin{aligned}
& \text { nullat } w^{\circ} \text { 8-r the Ar.iy Factor, AF }=\cos (k h \cos \theta)
\end{aligned}
$$

$$
\begin{aligned}
& \text { bot mull }=30 \text { and au son.. } \\
& \frac{2 \pi}{\lambda} h \cos 30=\frac{\pi}{2} \\
& \therefore h=\frac{\lambda}{2 \sqrt{s}} \rightarrow k h=\frac{2 \pi}{\lambda} \frac{\lambda}{2 \sqrt{3}}=\frac{\pi}{\sqrt{3}} \\
& \text { Max Difectivity } D=\frac{4 \pi}{\sqrt{2}} \quad \Omega=\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \sin \theta d \theta \partial \phi \\
& D=\frac{2}{\int^{2} \sin ^{3} \theta \cos ^{2}\left(\frac{\pi}{\sqrt{3}} \cos \theta\right) d \theta} \\
& =\frac{2}{0.39}=511 \frac{1-1 y}{}=7.12 B \\
& \left.\therefore|E|=7 \frac{K Q I}{2 \pi r} \sin \theta \cos (x h \cos \theta) \quad \geq 1 s=\frac{1}{2 \eta} \right\rvert\, E I^{2} \alpha r \\
& \therefore \omega=\frac{1}{2 \eta} \eta^{2}\left(\frac{2 \pi}{\lambda} \frac{\lambda}{50} \frac{1}{2 \pi}\right)^{2} J_{0}^{2} \sin ^{2} \theta \cos ^{2}(k h \cos \theta) \\
& \text { Rad }=\frac{1}{2} I_{0}^{2} R_{r}=\int_{0}^{2 \pi} \int_{0}^{\pi / 2} U d \Omega \\
& =\frac{1}{2} I_{0}^{2} R_{r}=2 \pi \frac{1}{2} \eta\left(\frac{1}{50}\right)^{2} I_{0}^{2} \int_{0}^{\pi / 2} \sin ^{2} \theta \cdot \cos ^{2}(k h \cos \theta) d \theta \\
& R_{r}=\frac{2 \pi \times 120 \pi}{(50)^{2}} \times 0.39=0.369 \Omega
\end{aligned}
$$

A doublet of length $\mathrm{L}=\lambda / 50$ is place horizontally above the ground at a height $\mathrm{h}=2 \lambda$.
Derive an equation for its field pattern.

Solution:

$\therefore E=E_{1}+E_{2}$
$=j \frac{z_{0}}{2} \frac{I d l}{r_{1} \lambda} \sin \left(\frac{\pi}{2}-\theta\right) e^{-j \sigma_{1}}-j \frac{z_{c}}{2} \frac{I d t}{\lambda r_{2}} \sin \left(\frac{\pi}{2}-\theta\right) e^{-j k_{1}}$
$=j \frac{z_{0}}{2} I \frac{d t}{\lambda}\left[\frac{e^{-j k_{1}}}{r_{1}}-\frac{e^{-j k_{r_{1}}}}{r_{2}}\right] \operatorname{Cos}(\theta)$
$r_{1} \cong r-h \cos \theta$
$r_{2} \cong r+h \cos \theta$
As in the for field zone: wing $r_{1} \& r_{2}$ is approx. the same as using r when found in the denominator

$$
\begin{aligned}
\therefore E & =j \frac{z_{0}}{2} \frac{I}{r} \frac{d t}{\lambda} e^{-j k r}\left[e^{j k h \theta o s \theta}-e^{-j k h \cos \theta}\right] \cos \theta \\
& =j \frac{z_{0}}{2} \frac{I}{r} \frac{d t}{\lambda} e^{-j k r} j 2 \sin (k h(\cos \theta) \cos \theta
\end{aligned}
$$

$\because h=2 \lambda$

principle of pattern multiplication

Two infinitesimal dipole antennas at XY Plan
 $$
\Theta=\pi / 2
$$

Case(1)
Infinitesimal oriented along y direction

(a)

(b)

(c)

Case(2)
Infinitesimal oriented along x direction

$$
d=\lambda / 2
$$

(a)

(b)

LINEAR ARRAY of IDENTICAL ELEMENTS

Controls that can be used to shape the overall pattern of the antenna:

1. The geometrical configuration of the overall array (linear, circular, rectangular, spherical, etc.)
2. The relative displacement between the elements
3. The excitation amplitude of the individual elements
4. The excitation phase of the individual elements
5. The relative pattern of the individual elements

Dipole oriented to y axis

TWO-ELEMENT ARRAY

For two infinitesimal horizontal dipoles positioned along the z-axis Oriented at y axis and suppose we study tot E at YZ plane

$$
\mathbf{E}_{t}=\mathbf{E}_{1}+\mathbf{E}_{2}=\hat{\mathbf{a}}_{\theta} j \eta \frac{k I_{0} l}{4 \pi}\left\{\frac{e^{-j\left[k r_{1}-(\beta / 2)\right]}}{r_{1}} \cos \theta_{1}+\frac{e^{-j\left[k r_{2}+(\beta / 2)\right]}}{r_{2}} \cos \theta_{2}\right\}
$$

(b) Far-field observations

$$
\mathrm{E}_{t}=\hat{\mathrm{a}}_{\theta} j \eta \frac{k I_{0} l e^{-j k r}}{4 \pi r} \cos \theta\left[e^{+j(k d \cos \theta+\beta) / 2}+e^{-j(k d \cos \theta+\beta) / 2}\right]
$$

$$
\mathbf{E}_{t}=\hat{\mathbf{a}}_{\theta} j \eta \frac{k I_{0} l e^{-j k r}}{4 \pi r} \cos \theta\left\{2 \cos \left[\frac{1}{2}(k d \cos \theta+\beta)\right]\right\}
$$

$\mathbf{E}($ total $)=[\mathbf{E}($ single element at reference point $)] \times$ array factor $]$

Arrays of two isotropic point sources (ARRAY FACTOR PATTERN)

Case 1 same amplitude and phase ($B=0$) and for $d=\lambda / 2 \mathrm{Kd} / 2=\pi / 2$ antennas on az axis (AF) $\mathrm{n}=\boldsymbol{\operatorname { c o s } [(k d / 2) \operatorname { c o s } \theta] = \operatorname { c o s } [(\pi / 2) \operatorname { c o s } \theta]}$
Max at

$$
\frac{\pi}{2} \cos \theta_{m}=m \pi \quad, \quad m=0,1,2, \ldots \quad \boldsymbol{\theta}_{m}=\cos ^{-1}(0)=\frac{\pi}{2},-\frac{\pi}{2}
$$

Nulls at

$$
\frac{\pi}{2} \cos \theta_{n}= \pm(2 m+1) \pi / 2
$$

$$
\theta_{n}=\cos ^{-1}(\pm 1)=0, \pi
$$

- Case 2 same amplitude and opposite phase $(\beta=180)$ and for $d=\lambda / 2 \mathrm{Kd} / 2=\pi / 2$

$$
\left|(A F)_{n}\right|=\cos \left(\frac{k d}{2} \cos \theta+\pi / 2\right)=\sin \left(\frac{k d}{2} \cos \theta\right)
$$

θ	0	10	20	30	40	50	60	70	80	90
$A F_{n}$	1	.999	.995	.978	.933	.847	.707	.5	.269	0

Changing phase of source currents shift to 180 change AF pattern as seen in Fig.

- Case 3 (a) same amplitude and quadrature phase $(\beta / 2=\pi / 4)$ and for $d=\lambda / 2$ $\mathrm{Kd} / 2=\pi / 2$

$$
\left|(A F)_{n}\right|=\cos \left(\frac{\pi}{2} \cos \theta+\pi / 4\right)
$$

θ	0	10	20	30	40	50	60	70	80
$\left\|A F_{n}\right\|$.707	.69	.637	.543	.406	.22	0	.245	.49
θ	90	100	110	120	130	140	150	160	170
$\left\|A F_{n}\right\|$.707	.87	.969	1	.975	.913	.839	.77	.723
θ	180								
$\left\|A F_{n}\right\|$.707								

Most radiation directed toward lower half

- Case 3 (b) same amplitude and quadrature phase ($\beta / 2=\pi / 4$) and for $d=\lambda / 4 K d / 2=\pi / 4$

Will be described bx phase accumulation

$$
\left|(A F)_{n}\right|=\cos \left(\frac{\pi}{4} \cos \theta+\pi / 4\right)
$$

Can we explain max occurred at 180 and nulls at 0 in terms of phase accumulation of phases Generated by array elements at observation point, ...this illustrated at next slide.

Pattern Synthesis

